1182

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 43. NO 5. MAY 1995

Complex Power and Mode Coupling
in Circular Chirowaveguides

Gerald Busse, Member, IEEE, and Arne F. Jacob, Member, IEEE

Abstract—The total power carried by two (or more) modes
of lossless circular chirowaveguides is shown to be complex
in general, both above and below cutoff. This is explained by
the coupling between modes which, in turn, proves the lack of
orthegonality, at least in the power sense.

I. INTRODUCTION

HE USE of so-called chirowaveguides in practical appli-

cations, as for instance for measurement purposes, calls
for an analysis which will often require a mode expansion. e.g.
at an air-chiral interface. To this end the dispersion equation
of the chirowaveguide must be solved and its eigenmodes
determined. For circular chirowaveguides this has been done in
detail both above [1], [2] and below cutoff [3]. Commonly, or-
thogonality relations are used to simplify the expansion. While
in empty homogeneous waveguides the complex power serves
this need another orthogonality relation has been proposed for
chiral waveguides [4]. In this paper, restricting ourselves to
lossless circular chirowaveguides, we examine the complex
power carried by their modes, and show analytically that these
are coupled. From this we infer that an orthogonality in the
power sense does not exist.

II. FORMULATION

The complex power P, carried along the axis of a wave-
guide, here the z-direction of a cylindrical coordinate system
(p, ¢, 2), is given by the integral of the complex Poynting
vector over the cross section S of the waveguide. Let us
consider two modes » and v. Then

z _// Hu* (EU X H’U*) + (Eu X H’U*)
% (E* x H*)|7dS
=Pr% + P2V 4 PV 4 PO (1)

The asterisk denotes complex conjugation, and E and H are
the phasors of the electric and magnetic field. In conventional
waveguides the first two terms describe the complex power
carried by the modes » and v, respectively, while the other
two vanish because of orthogonality. We will call these terms
modal and coupled power, respectively.
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In the following (1) shall be investigated for the case
of a circular waveguide with radius a, perfectly conducting
walls and a lossless chiral filling. Following the Born-Drude-
Fedorov notation

D =¢(E+pV x E) and
B =u(H + 8V x H) @)

the material is characterized by its permittivity e, its per-
meability y, and the chirality parameter 5. As was shown
in [2] the electromagnetic field can be expressed in terms
of left and right circular polarized fields F';, and Fr (LCP
and RCP), which, in turn, can be expanded into individual
modes. For harmonic time dependence exp (jwt) and with the
abbreviation n = /(g/u) this finally leads to
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the transverse components of the individual modes being
_jemim® . gmikI"z
@37
+ %Jm(affnnl))}a
L e L
(™)

k™
s fm (a’]n"p)} 4

mn
FJp

g )

FRy = s )

_|_

The upper sign refers to LCP (J = L) and the lower to RCP
(J = R).J], denotes the derivative of the Bessel function
Jm wat. the argument. The azimuthal dependence of the
fields is determined by m, while n describes the order of
the solution. With k = w+/(ep), the radial wavenumbers are
given by a7 = \/(v7 — (k7")),ve(r) = k/(1—(+)kB)
being the wavenumber of the LCP/(RCP) field, and k7" the
unknown propagation constant. The latter is a solution of
the characteristic equation obtained by applying the bound-
ary conditions. This also leads to the modal field ratios
™ = —Jn(af™a)/Jm(a’f™a) while the expansion coef-
ficients d™" depend on the source distribution.
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The solutions of the characteristic equation have been
discussed in detail in [1]-[3]. A typical dispersion curve
is depicted in Fig. 1. Above some frequency fuin,k, iS
real and splits into two branches which, except for a small
backward wave region, corres pond to propagation in + and
—z-direction. Below fy;,, %k, becomes complex. The two
solutions, which are now conjugate complex, correspond to
a decay in + or —z-direction. The case —m can be obtained
from symmetry considerations [3].

With (3) any of the terms (k, ) of P, in (1) can be written as

phil :// Ek

dk dl*/ FL_i_,,,kF;cz)

x H™)zdS

x(Fl,-f—— ’*F’R*)] 7dS

1
=_——d" dl*/ [(F% x FY — rkr*F% < FY)
45n )

+ (r*F% x FY — v F% x F2)]2dS, 5

or, in short form
PM =Py +P5. ©)

Here, for simplicity of notation, we have used the indices
k or [ for all mode-characterizing quantities. Using (3) and
(4) PEl can also be expressed in terms of the transverse
components of Fr g. It is easily shown that the waveguide
modes are orthogonal w.r.t their azimuthal order m, i.e. the
coupled power is zero. Hence, we will only consider modes
with same m in the following. Together with the solutions of
the characteristic equation the relations derived in this section
completely determine the complex power P, that will now be
analyzed in more detail.

HI. ANALYSIS

A. Useful Relations

The detailed analysis of the complex power P, requires
integrals such as in (5) to be investigated. To simplify this task
we will indicate some relations for the terms of P®! in (6).
An expansion in terms of Flz”lR as in (5) immediately leads to

Pk,l _ le,lk*’
PRE = _phi*, )
In (22) of their paper [4] Engheta and Pelet have derived a
relation that verifies mode orthogonality. However, they have
assumed real propagation constants. Their approach can be
generalized to include the case of complex modes, as they are
encountered in chirowaveguides [3]. Then, as can easily be
shown

(k- i) [ (8"
S

x H* + E™* x H*)ZdS =0 (8)
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Fig. 1. Real (—) and imaginary (----- ) part of a typical propagation constant

versus frequency in a circular chirowaveguide.

or, with (5)—(7), equivalently
(k- k) - P =0 ©)

must hold. Equations (8) and (9) are satisfied for k¥ = k!*.
This situation occurs when & = [ and k, is real, i.e. when a
single propagating mode is considered. It is also the case when
applying (8) to different complex modes with propagation
constants &} and k., both solving the characteristic equation
[3]. For k* # k!* the integral, i.e. P5', has to vanish. In
particular, this is the case when & = [ and k& is complex (non-
real), that is when a single mode below cutoff is considered.
Consequently, the biorthogonality relation defined by (8) [5]
is not suited for mode expansions because it does not allow
to distinguish between jdentical and different modes. Then (9)
yields

PN =0, (KF#ED). (10)

B. The Complex Power

The various terms of (1) can now be analyzed. In a first
step it is useful to normalize them to the modal expansion
coefficients, and to eliminate the z-dependence

Nk

k,l
DU SR TS TO ¥
b

= i=1,2.

(11
Because of their symmetry w.r.t. the quantities dl dk k% and
k! the relations (7) and (10) apply as well for P "and PZle
We will now determine wether the correspondmg normahzed
power expression PRl = PR 4 PR s real, imaginary, or
complex and, therefore, analyze in detail the integrals defining
the power components. To this end one must express the fields
in terms of their components as given in (4), and undertake a
case study. The following possibilities have to be considered
for the propagation constants:
Dk =kKE&=0

a) kP real
b) k* complex



1184

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995

TABLE 1
NORMALIZED MODAL AND COUPLED POWER IN A CIRCULAR CHIROWAVEGUIDE
Case Propagation Bl prl Symmetry
constants =1 2

— 4 - ~ -
la) kS =kt e R szl,k e R 0
1b) kX =k1!ecC 0 15_'(2"‘ € JR -
2a) k) ¢ R, k) € R 0 1’5:2'1 e R ~:"'l = - (15:'1)‘
2b) kX e R, k! eC 0 ﬁz"rl e C ~Z"'1 = - (p:"'l)'
2c) k! e &, k z 0 ES_’;'l O ~:“'1 = - “S:"rl)
2d) k) e C, k- = C, 15"1'1 = O 0 ”f'l = ﬁfvl

2) K £k (£

a) k¥ and k. both real

b) k" real and AL complex

c) k¥ and k! both complex (kF # k)

d) k% and k. both complex (k* = k')
As can be seen from the dispersion diagram in Fig. 1 the
radial wavenumbers a g 1, can be real, imaginary or complex.
The different regions are delimited by the curves ag = 0 and
ar = 0 and the frequency fmin, and they are symmetrical
w.r.t. the frequency axis. For the analysis these different cases
have to be considered separately. As an illustration Case 2a) is
treated in detail in the Appendix. For P¥! the results have been
summarized in Table I. They show that only the classification
w.r.t. k. is important. Using (11) the total complex power P,
carried by two modes w and v can now be calculated from
(1). It then reads

P, =|d"?. ﬁ:»u cem (k=K )z
+|dV)? - PP eI ki Rz
Ty g Py L e—a(kE—kE)z
P N O P;vﬂt cem IR —RE )z (12)

In this equation the first two terms that describe the modal

power reflect the situation of Case 1 while the last two,

the expressions for the coupled power, have to be discussed
according to Case 2.

IV. DISCUSSION

In contrast to conventional lossless waveguides the modes
in circular chirowaveguides are not independent from one
another with the exception of the symmetric ones (m = 0).
Thus, the power carried by them not only involves modal, but
also coupled power. In the following we will examine these
different contributions for the cases presented in the previous
section.

A. The Modal Power

From the corresponding terms in (12) it is easily seen that,
just like in conventional (lossless) waveguides, the power is
real above (Case 1a)) and imaginary below cutoff (Case 1b)),
although in the latter case k, is complex in general. This
means that the modes either carry active power or behave
evanescently, i.e. they store energy.

B. The Coupled Power

Because of the complex expansion coefficients and the
exponential z-dependence the coupled power will be complex
not only in the Cases 2b), 2¢), and 2d) (see Table 1), but also
in the Case 2a). Thus, formally, each of the terms P*v and
P2 represents a transport of complex power. However, these
terms cannot exist separately. With the symmetry relations
from Table I their sum, i.e. the total coupled power, is always
imaginary in the Cases 2a), 2b), and 2c¢), and real in the Case
2d). In the former cases there is only net energy storage while
in the latter we have a net flow of active power.

The coupled power oscillates along the z-axis and is more
or less attenuated depending on the kz of the modes. For Case
2a) there is no attenuation at all because both propagation
constants are real. The stored energy then has a sinusoidal
distribution along the waveguide, being alternately inductive
and capacitive. In the Cases 2b) and 2c¢) the evanescent
character of the complex mode(s) involved determines the
distribution of the coupled power. Figs. 2(a) and 2(b) illustrate
Case 2b), and depict the z-dependence of P*' and P,
respectively. As can be seen the real parts cancel while the
imaginary parts are in phase. Again, the total coupled power
is alternately inductive and capacitive, but decays exponen-
tially. The numerical values in this example are solutions
of the dispersion equation [3], and were chosen so as to
get a rather low attenuation. Typically, especially when two
complex modes are considered, the exponential decay will be
the largely dominating feature.
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Fig. 2. (a) Active (—) and reactive (----- ) part of the coupled power P;"°

versusz (m = 1,n% = L,nY =4,e = o, pp = po,B/a =0.05,k-a =62,
d¥ = exp (—730°), d¥ = exp (—j60°)). (b) Same as in (a) but for P;"".

Finally, the Case 2d) of two modes decaying in opposite
directions has to be considered. With k¥ = k'* the exponential
z-dependence vanishes. Thus, the total coupled power which
is real now remains constant along the waveguide. Physically,
this corresponds to a situation where power is transmitted
through a waveguide section below cutoff.

C. The Complex Power

As mentioned before the complex power is obtained from
(12). If only one mode is considered, then, of course, the
complex power reduces to the modal power. For two modes it
represents a combination of modal and coupled power which
have been discussed above. As an example, let us take Case
2b) with £* € R and k¥ € C. The modal power is real for
mode u (Case 1a)) and imaginary for mode v (Case 1b)). With
also the coupled power being imaginary the complex power
has an active and a reactive part. The latter will rapidly decay
as was explained above for this case. In the same way one
can show P, to be imaginary in the Case 2c), and complex
in the Cases 2a) and 2d).

In comparison, in dielectric-loaded waveguides only the
complex modes are non-orthogonal and they occur as pairs
characterized by (k.,—k*) and (—k., k}). Thus they carry
coupled power that is active for the mode combination
(k., k%), reactive for (k.,—k}), or zero for (k.,—k.). But,
as was shown in [6] and [7], their modal power is zero.

Because the modes couple by pairs the results presented
above can, of course, be extended to characterize the complex
power carried by any number of modes.
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V. CONCLUSION

The complex power carried by the modes of lossless circular
chirowaveguides has been analyzed. It was shown that modes
with the same azimuthal order are not orthogonal in the power
sense. Thus, their complex power is the sum of both modal and
coupled power. The total coupled power is imaginary except
in the case of two complex modes propagating in opposite
directions where it becomes real. As a result the complex
power has both active and reactive components.

Some fundamental aspects of wave propagation in lossless
circular chirowaveguides were shown to be rather uncommon
as compared to the ones of other, more familiar waveguiding
structures. In practice, however, lossless chiral media do not
exist, and this fact has to be taken into account when analyzing
a real case. A generic treatment, though, such as the one
presented here, will become more involved then.

APPENDIX

As an example, we will show here that the normalized power
expression P! is real in the Case 2a), where the indices k and
1 refer to different propagating modes. We then obtain from
(5), (10), and (11)

k l

sz e](kk —k")z

k I l* Ix
4]n// (Fh x 1) 140 x PRI,
(AD

Inserting the field components from (4) and integrating over
¢ leads to

P 237]/ (’I"kFRp —rkFR¢F

— P FE ER 4 T FE FE ) dp, (A2)

where F is a shorthand ‘notation of F in (4) that omits
the ¢- and z-dependence. The following cases for the radial
wavenumbers have to be distinguished:

1) ok ok, ol and ol are real. Consequently, the modal
field ratios 73 and r; and all F¢ are real as well. Due to
the imaginary Fp all terms of the integrand in (A2) are
imaginary, thus P*! is real.

2) ok, ok and o are real, and o, is imaginary. While the
ratio 7y, is always real then, the other quantities depend
on the azimuthal order m:

a) m even: r; and all F¢, are real, all ﬁ’p are imaginary.
Consequently, P! is real.

z
b) m odd: Compared to the even case r; and FR¢

beconge imaginary, and FR , real. This results in a
real PRl
3) o, ak, and ok are real, and o, is imaginary. This case
is symmetnc to the previous case, and P¥l is also real.
4) of and of are real, and ok and ol are imaginary.
Now, we have:
a) meven: r; and r; are real. All F are imaginary and
all F¢ are real. Again, P*! is real



1186

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995

b) m odd: r, and r; are imaginary. The field com-
ponents FL’ijLlB?FR’W? angl F Ri¢ are imaginary
and FRkvaRlpy FLkdn and Fle) are real. Also in
this case P*! is real.

As can be seen, P®! is real in all possible cases.
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