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Power and Mode Coupling
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in circular Chirowaveguides
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Abstract-The total power carried by two (or more) modes

of lossless circular chirowaveguides is shown to be complex
in general, both above and below cutoff. This is explained by
the coupling between modes which, in turn, proves the lack of
orthogonality, at least in the power sense.

I. INTRODUCTION

T HE USE of so-called chirowaveguides in practical appli-

cations, as for instance for measurement purposes, calls

for an analysis which will often require a mode expansion, e.g.

at an air-chiral interface. To this end the dispersion equation

of the chirowaveguide must be solved and its eigenmodes

determined. For circular chirowaveguides this has been done in

detail both above [1], [2] and below cutoff [3]. Commonly, or-

thogonality relations are used to simplify the expansion. While

in empty homogeneous waveguides the complex power serves

this need another orthogonality relation has been proposed for

chiral waveguides [4]. In this paper, restricting ourselves to

lossless circular chirowaveguides, we examine the complex

power carried by their modes, and show analytically that these

are coupled. From this we infer that an orthogonality in the

power sense does not exist.

II. FORMULATION

The complex power P, carried along the axis of a wave-

guide, here the z-direction of a cylindrical coordinate system

(P, 4, z), is given by the integral of the complex Poynting
vector over the cross section S of the waveguide. Let us

consider two modes u and u. Then

P. =
I

[(E’ x w“) + (E” x H“*) + (E” x w“)

s

+ (E” x H“”)];(L9

= Pzu’u + p:>” + F’:JV + pv~”. z.
(1)

The asterisk denotes complex conjugation, and E and H are

the phasors of the electric and magnetic field. In conventional

waveguides the first two terms describe the complex power

carried by the modes u and v, respectively, while the other

two vanish because of orthogonality. We will call these terms

modal and coupled power, respectively.
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In the following (1) shall be investigated for the case

of a circular waveguide with radius a, perfectly conducting

walls and a lossless chiral filling. Following the Born-Drude-

Fedorov notation

D=&(E+@VXE) and

B= K(H+fWx H) (2)

the material is characterized by its permittivity s, its per-

meability ~, and the chirality parameter ,L1.As was shown

in [2] the electromagnetic field can be expressed in terms

of left and right circular polarized fields FL and FR (LCP

and RCP), which, in turn, can be expanded into individual

modes. For harmonic time dependence exp (jwt) and with the

abbreviation q = _ this finally leads to

. (F~n _ ~mnF~n), (3)

the transverse components of the individual modes being

+ IYJm(a~np) ,

(4)

The upper sign refers to LCP (J = L) and the lower to RCP

(J = R). J~ denotes the derivative of the Bessel function

J~ w.r.t. the argument. The azimuthal dependence of the

fields is determined by m, while n describes the order of

the solution. With k = w m, the radial wavenumbers are

given by Q?” = /(% - (&n)2)>%(R) = ~/(1 -(+)~6)
being the wavenumber of the LCP/(RCP) field, and k~” the

unknown propagation constant. The latter is a solution of

the characteristic equation obtained by applying the bound-

ary conditions. This also leads to the modal field ratios

‘r‘n = – Jn (a~na,)/J~ (a~n w) while the expansion coef-

ficients dmm depend on the source distribution.
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The solutions of the characteristic equation have been

discussed in detail in [1]–[3]. A typical dispersion curve

is depicted in Fig. 1. Above some frequency f~in, k~ is

real and splits into two branches which, except for a small

backward wave region, corres pond to propagation in + and

—z-direction. Below j’~in, k= becomes complex. The two

solutions, which are now conjugate complex, correspond to

a decay in + or –z-direction. The case –m can be obtained

from symmetry considerations [3].

With (3) any of the terms (k, i) of P. in (1) can be written as

I
P:” = [E’ x IF”]zds

s

— & dk dt”
~

[(l’! + rkF~)

s

x (F’& – ?J*F:)] i?ds

— & dk dz”
!

[(l’! x Iy - AJ*F: x F:)

s

+ (rkF~ X F~ – rz*F~ X Fj$)].ZdS, (5)

or, in short form

pw = p:;~+ p:;z.
z (6)

Here, for simplicity of notation, we have used the indices

k or 1 for all mode-characterizing quantities. Using (3) and

(4) P$z can also be expressed in terms of the transverse

components of FL,R. It is easily shown that the waveguide

modes are orthogonal w.r.t their azimuthal order m, i.e. the

coupled power is zero. Hence, we will only consider modes

with same m in the following. Together with the solutions of

the characteristic equation the relations derived in this section

completely determine the complex power P, that will now be

analyzed in more detail.

III. ANALYSIS

A. Useful Relations

The detailed analysis of the complex power P, requires

integrals such as in (5) to be investigated. To simplify this task

we will indicate some relations for the terms of P$i in (6).

An expansion in terms of F$~R as in (5) immediately leads to

P;;z = P:f” ,

P:;z = –P:f”. (7)

In (22) of their paper [4] Engheta and Pelet have derived a

relation that verifies mode orthogonality. However, they have

assumed real propagation constants. Their approach can be

generalized to include the case of complex modes, as they are

encountered in chirowaveguides [3]. Then, as can easily be

shown

(k~ - k$)~ (E’ X H’*+ E’* X @)ZdS = O (8)

s

Re{k}t
lm{kJ

o

Iml”

Fig. 1. Real (—) and imaginary (-- -- -) part of a typical propagation constant
versus frequency in a circular chkowaveguide.

or, with (5)–(7), equivalently

(k: - k:) .Py = o (9)

must hold. Equations (8) and (9) are satisfied for kj = k$.

This situation occurs when k = 1 and k. is real, i.e. when a

single propagating mode is considered. It is also the case when

applying (8) to different complex modes with propagation

constants k; and k., both solving the characteristic equation

[3]. For k$ # k~ the integral, i.e. P~;l, has to vanish. In

particular, this is the case when k = 1 and k. is complex (non-

real)j that is when a single mode below cutoff is considered.

Consequently, the biorthogonality relation defined by (8) [5]

is not suited for mode expansions because it does not allow

to distinguish between identical and different modes. Then (9)

yields

P:;t = o, (k: # J@). (lo)

B. The Complex Power

The various terms of (1) can now be analyzed. In a first

step it is useful to normalize them to the modal expansion

coefficients, and to eliminate the z-dependence

Pjl
P:;z = —

. ~j(k:–kg)z
dk . & > i=l,2. (11)

Because of their symmetry w.r.t. the quantities d~, dk, k$ and

k: the relations (7) and (10) apply as well for ~~~~ and ~~iZ.

We will now determine wether the corresponding normalized

power expression Pkll = P~’lZ1 + F$l is real, imaginary, or

complex and, theref~re, analyze in detail the integrals defining

the power components. To this end one must express the fields
in terms of their components as given in (4), and undertake a

case study. The following possibilities have to be considered

for the propagation constants:

1) Ic:=k;(k=i)

a) kg real

b) k$ complex
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TABLE I
NORMALIZED MODAL AND COUPLED POWER IN A CIRCULAR CHIROWAVEGUIDE

Case Propagation -krl
P=

‘kTl
P=

Symmetry

constants :1 Z2

la) k,” = k,’ E 1? P-k’k E R
o

Z1

lb) kz~ = k.1 E C o F=:k ~ jJ@
—

2a) kzk E l?, kzl E R o ‘k,l
P EJi?

‘k, l
P=–=2 (;:”)’=

2b) kzk e l?, kz% F U7 o P“:2’ 1 E c
‘k,l
P=–~

~p:rl).

1
2C) k= ’ti C,k>,-Z 0 ‘ktl

P 5 .:
‘kvl ‘ktl .
P.= -(P.)C2

2d) kzJe C,kc C, ‘k,l
P Fc o ‘k, l

P
‘ktl.

21
= p-

:

2) kg#k:(k #l)

a) k$ and k~ both real

b) k$ real and k~ complex

c) k! and k: both complex (k; # k~ )

d) k$ and k~ both complex (k$ = k~ )

As can be seen from the dispersion diagram in Fig. 1 the

radial wavenumbers aR,L can be real, imaginary or complex.

The different regions are delimited by the curves @R = O and

~L = O and the frequency j~in, and they are symmetrical

w .r.t. the frequency axis. For the analysis these different cases

have to be considered separately. As an illustration Case 2a) is

treated in detail in the Appendix. For ~$~ the results have been

summarized in Table I. They show that only the classification

w.r.t. k, is important. Using (11) the total complex power PZ

carried by two modes u and w can now be calculated from

(1). It then reads

P, = ld”12 . PZU’U . e–~(k~–k~’jz

+ Iflz .pv, u . ~–J(k:–k; ”)Z

+ dll . ~W$ :pU,V . e–j(k:–k:”)z
~.

+ d“” . dv . P~’u . e-~(k~-k~’)z. (12)

In this equation the first two terms that describe the modal

power reflect the situation of Case 1 while the last two,

the expressions for the coupled power, have to be discussed

according to Case 2.

IV. DISCUSSION

In contrast to conventional lossless waveguides the modes

in circular chirowaveguides are not independent from one

another with the exception of the symmetric ones (m = 0).

Thus, the power carried by them not only involves modal, but

also coupled power. In the following we will examine these

different contributions for the cases presented in the previous

section.

A. The Modal Power

From the corresponding terms in (12) it is easily seen that,

just like in conventional (lossless) waveguides, the power is

real above (Case 1a)) and imaginary below cutoff (Case lb)),

although in the latter case k, is complex in general. This

means that the modes either carry active power or behave

evanescently, i.e. they store energy.

B. The Coupled Power

Because of the complex expansion coefficients and the

exponential z-dependence the coupled power will be complex

not only in the Cases 2b), 2c), and 2d) (see Table I), but also

in the Case 2a). Thus, formally, each of the terms Pzuw and

P~’” represents a transport of complex power. However, these

terms cannot exist separately. With the symmetry relations

from Table I their sum, i.e. the total coupled power, is always

imaginary in the Cases 2a), 2b), and 2c), and real in the Case

2d). In the former cases there is only net energy storage while

in the latter we have a net flow of active power.

The coupled power oscillates along the z-axis and is more

or less attenuated depending on the kz of the modes. For Case

2a) there is no attenuation at all because both propagation

constants are real. The stored energy then has a sinusoidal

distribution along the waveguide, being alternately inductive

and capacitive. In the Cases 2b) and 2c) the evanescent

character of the complex mode(s) involved determines the

distribution of the coupled power. Figs. 2(a) and 2(b) illustrate

Case 2b), and depict the z-dependence of P: U and P~”,

respectively. As can be seen the real parts cancel while the

imaginary parts are in phase. Again, the total coupled power

is alternately inductive and capacitive, but decays exponen-

tially. The numerical values in this example are solutions

of the dispersion equation [3], and were chosen so as to

get a rather low attenuation. Typically, especially when two

complex modes are considered, the exponential decay will be

the largely dominating feature.
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Fig. 2. (a) Active (—) and reactive (-----) part of the coupled power P: ‘“

versus z (m = 1, rs” = l,n”=4, E=~O, p=po,,6/a =0.05, ka= 6.2,
d: = exp (–j30°), d} = exp (–j60°)). (b) Same as in (a) but for P#’U.

Finally, the Case 2d) of two modes decaying in opposite

directions has to be considered. With k} = k: the exponential

z-dependence vanishes. Thus, the total coupled power which

is real now remains constant along the waveguide. Physically,

this corresponds to a situation where power is transmitted

through a waveguide section below cutoff.

C. The Complex Power

As mentioned before the complex power is obtained from

(12). If only one mode is considered, then, of course, the

complex power reduces to the modal power. For two modes it

represents a combination of modal and coupled power which

have been discussed above. As an example, let us take Case

2b) with k~ G R and k; E C. The modal power is real for

mode u (Case 1a)) and imaginary for mode v (Case lb)). With

also the coupled power being imaginary the complex power

has an active and a reactive part. The latter will rapidly decay

as was explained above for this case. In the same way one

can show Pz to be imaginary in the Case 2c), and complex

in the Cases 2a) and 2d).

In comparison, in dielectric-loaded waveguides only the

complex modes are non-orthogonal and they occur as pairs

characterized by (kz, –k:) and (–kz, k~). Thus they carry

coupled power that is active for the mode combination

(k,, kj), reactive for (k=, -k;), or zero for (k., -kZ). But,

as was shown in [6] and [7], their modal power is zero.
Because the modes couple by pairs the results presented

above can, of course, be extended to characterize the complex

power carried by any number of modes.

V. CONCLUSION

The complex power carried by the modes of lossless circular

chirowaveguides has been analyzed. It was shown that modes

with the same azimuthal order are not orthogonal in the power

sense. Thus, their complex power is the sum of both modal and

coupled power. The total coupled power is imaginary except

in the case of two complex modes propagating in opposite

directions where it becomes real. As a result the complex

power has both active and reactive components.

Some fundamental aspects of wave propagation in lossless

circular chirowaveguides were shown to be rather uncommon

as compared to the ones of other, more familiar waveguiding

structures. In practice, however, lossless chiral media do not

exist, and this fact has to be taken into account when analyzing

a real case. A generic treatment, though, such as the one

presented here, will become more involved then.

APPENDIX

As an example, we will show here that the normalized power

expression F$’J is real in the Case 2a), where the indices k and

1 refer to different propagating modes. We then obtain from

(5), (10), and (11)

P
k>l

p:,l = ~j(k:–kg)z
dk ~;l*

—— +] [rk(F~ X ~~) - rt*(@ X F&)]2’dS.

s

(Al)

Inserting the field components from (4) and integrating over

q$ leads to

where F is a shorthand notation of F in (4) that omits

the @ and z-dependence. The following cases for the radial

wavenumbers have to be distinguished:

1) ~~, a~, a~, and C& are real.- Consequently, the modal
field ratios rk and rz and all F@ are real as well. Due to

the imaginaryFP all terms of the integrand in (A2) are

imaginary, thus P:’~ is real.

2) c$, a~ and ~~ are real, and cs~ is imaginary. While the
ratio rk is always real then, the other quantities depend

on the azimuthal order m:

a) m even: rl and all F+ are real, all FP are imaginary.

Consequently, P}J is real.

b) m odd: Compared to the even case rt and FA4

become imaginary, and F& real. This results in a

real P$IZ.

3) CY\, ~~, and a! are real, and tz~ is imaginary. This case

is symmetric to the previous case, and ~$’~ is also real.

4) a! and C$ are real, and a~ and ah are imaginary.
Now, we have:

a) m even: rk and rl are real. All 3P are imaginary and

all PO are real. Again, ~$’~ is real.



1186 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995

b) m odd: r~ and rl are imaginary. The field com-

ponents &P, FLIP,~Rkcj,;ndFRl~are imaginary

and FRhp, @Rip, FLk~, and FLL4 are real. Also in
this case ~$’t is real.

As can be seen, P$L is real in all possible cases.
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